MATHEMATICS

Minggu, 08 Juli 2012

വേറിട്ടചിന്തകള്‍ 3 : സമാന്തരശ്രേണി

പത്താംക്ലാസിലെ ഗണിതം ആദ്യ പാഠമായ സമാന്തരശ്രേണികളില്‍ നിന്നും ഭാമടീച്ചര്‍ ഗണിതക്ലബ്ബിലെ കുട്ടികള്‍ക്ക് താഴേ കാണുന്ന ഒരു പ്രവര്‍ത്തനം നല്‍കി,
എണ്ണല്‍സംഖ്യകള്‍ ക്രമത്തില്‍ എഴുതിയാല്‍ അവ പൊതുവ്യത്യാസം 1 ആയ ഒരു സമാന്തരശ്രേണിയിലാണല്ലോ..? എന്നാല്‍, എ​ണ്ണല്‍സംഖ്യകളുടെ വര്‍ഗ്ഗങ്ങള്‍ ക്രമത്തിലെഴുതിയ ശേഷം അവയുടെ അടുത്തടുത്ത പദങ്ങളുടെ വ്യത്യാസങ്ങള്‍ അടുത്തവരിയിലെഴുതി അവ സമാന്തരശ്രേണിയിലാണോ എന്ന് പരിശോധിക്കുക.
പിന്നീട് എ​ണ്ണല്‍സംഖ്യകളുടെ ഘനങ്ങള്‍ ക്രമത്തിലെഴുതിയ ശേഷം അവയുടെ അടുത്തടുത്ത പദങ്ങളുടെ വ്യത്യാസങ്ങള്‍ അടുത്തവരിയിലെഴുതി അവ സമാന്തരശ്രേണിയിലാണോ എന്ന് പരിശോധിക്കുക.
സമാന്തരശ്രേണി കിട്ടുന്നതുവരെ ഈ പ്രവര്‍ത്തനം തുടരുക.

പ്രവര്‍ത്തനം ചെയ്യാന്‍ കുട്ടികള്‍ അനന്യയുടെ വീട്ടില്‍ ഒത്തുകൂടി. ഹരിത പറഞ്ഞു."നമുക്ക്, ഈപ്രവര്‍ത്തനം നാലാംകൃതി, അഞ്ചാംകൃതി, ആറാംകൃതി എന്നിവകൂടി കണ്ട് വികസിപ്പിച്ചാലോ?" ശരി എന്നായി ഗ്രൂപ്പിലെ മറ്റ് മിടുക്കികള്‍. അവര്‍ ചെയ്ത പ്രവര്‍ത്തനം താഴേ കാണിക്കുംപോലെയാണ്.
എണ്ണല്‍സംഖ്യകള്‍
1,2,3,4,5,6,..................(സമാന്തരശ്രേണി ആണ്)
ആദ്യപദം = 1
പൊതുവ്യത്യാസം =1


എണ്ണല്‍സംഖ്യകളുടെ വര്‍ഗ്ഗങ്ങള്‍

ശ്രേണി 1
1.4.9.16.25,..................
ശ്രേണി 2

3,5,7,9,11,....................(സമാന്തരശ്രേണി ആണ്)
ആദ്യപദം = 3
പൊതുവ്യത്യാസം = 2


എണ്ണല്‍സംഖ്യകളുടെ ഘനങ്ങള്‍

ശ്രേണി 1
1,8,27,64,125,216,.......

ശ്രേണി 2
7,19,37,61,91,..............

ശ്രേണി 3
12,18,24,30,.................(സമാന്തരശ്രേണി ആണ്)
ആദ്യപദം = 12
പൊതുവ്യത്യാസം = 6


എണ്ണല്‍സംഖ്യകളുടെ നാലാംകൃതികള്‍

ശ്രേണി 1
1,16,81,256,625,1296,......

ശ്രേണി 2
15,65,175,369,671,...........

ശ്രേണി 3
50,110,194,302,................

ശ്രേണി 4
64,84,108,.........................(സമാന്തരശ്രേണി ആണ്)
ആദ്യപദം = 60
പൊതുവ്യത്യാസം = 24


എണ്ണല്‍സംഖ്യകളുടെ അഞ്ചാംകൃതികള്‍

ശ്രേണി 1
1,32,243,1024,3125,7796,16807,...............

ശ്രേണി 2
31,211,781,2101,9031,...............................

ശ്രേണി 3
180,570,1320,2550,4380,...........................

ശ്രേണി 4
390,750,1230,1830,.....................................

ശ്രേണി 5
360,480,600,.................(സമാന്തരശ്രേണി ആണ്)
ആദ്യപദം = 360
പൊതുവ്യത്യാസം = 120


എണ്ണല്‍സംഖ്യകളുടെ ആറാംകൃതികള്‍

ശ്രേണി 1
1,64,729,4096,............................................

ശ്രേണി 2
63,665,3367,...............................................

ശ്രേണി 3
602,2702,8162,...........................................

ശ്രേണി 4
2100,5460,11340,20460,33540,.................

ശ്രേണി 5
3360,5880,9120,13080,..............................

ശ്രേണി 1
2520,3240,3960,......................(സമാന്തരശ്രേണി ആണ്)
ആദ്യപദം = 2520
പൊതുവ്യത്യാസം = 720

പ്രവര്‍ത്തനത്തില്‍ നിന്നുള്ള കണ്ടെത്തലുകള്‍ ഒരു പട്ടികയാക്കാന്‍ തീരുമാനിച്ചു.
പട്ടിക നാലഞ്ചാവര്‍ത്തി വായിച്ചുകഴിഞ്ഞയുടന്‍ അനന്യയുടെ പ്രതികരണം. "ആദ്യ രണ്ടുകോളങ്ങള്‍ തുല്യമായാണല്ലോ വരുന്നത്..!"
ഉടനെ അമ്മു "പൊതുവ്യത്യാസത്തിന്റെ കോളം ശ്രദ്ധിച്ചോ..? ആദ്യശ്രേണിയുടേത് 1, രണ്ടാം ശ്രേണിയുടേത് 2, മൂന്നാം ശ്രേണിയുടേത് 6...ഈ ഒരു ക്രമം വരുന്നതുകണ്ടോ..?"
ഗ്രൂപ്പിലെ മറ്റംഗങ്ങള്‍ ഇത് ശ്രദ്ധാപൂര്‍വ്വം വിശകലനം ചെയ്യവേ നിസാര്‍ പറഞ്ഞു. "ആദ്യപദത്തിന്റെ കോളത്തിലും ഒരു ക്രമമുണ്ടല്ലോ, 1,3,12,..."
എല്ലാവരും നിസാറിന്റെ ഗണിതചിന്തയെ പ്രകീര്‍ത്തിച്ചു.
അപ്പോള്‍ അമ്മുവിന് ഒരു സംശയം. "എണ്ണല്‍സംഖ്യകളെ n ആം കൃതിയിലേക്ക് ഉയര്‍ത്തിയാലോ..?"
അതൊരു നല്ല ആശയം തന്നെ. എല്ലാവരും കൂടി പട്ടിക താഴേ കാണുംപോലെ മാറ്റിയെഴുതി.

ഇത്രയും തയ്യാറാക്കിക്കഴിഞ്ഞപ്പോള്‍ ആതിരയ്ക്കൊരു സംശയം. "കുറേയേറെ സന്ദര്‍ഭങ്ങളില്‍ ശരിയായി വന്നുവെന്ന് കരുതി, ഒരു പ്രസ്താവന ഗണിത തത്വമായി കരുതാനാകില്ലെന്ന് മുമ്പ് ഭാമടീച്ചര്‍ പറഞ്ഞിട്ടില്ലേ..?"
അടുത്തദിവസം ഭാമടീച്ചറെ ചെന്നുകണ്ട സംഘത്തിന്റെ ഗണിതചിന്തയെ ഭാമടീച്ചര്‍ പ്രശംസിച്ചു. ഉയര്‍ന്ന ക്ലാസുകളില്‍ നിങ്ങള്‍ പഠിക്കുവാന്‍ പോകുന്ന ബൈനോമിയല്‍ തിയറം ഉപയോഗിച്ച് ഇത് തെളിയിക്കാം. എന്നാല്‍ ഈ ആശയം ഹൈസ്കൂളില്‍ ഇല്ലല്ലോ..? കുട്ടികള്‍ നിരാശരായി. സാരമില്ല, നമുക്കിത് മാത്​സ് ബ്ലോഗിലെ കൃഷ്ണന്‍ സാറോടു ചോദിക്കാം.നമുക്ക് മനസ്സിലാകുന്ന രീതിയില്‍ അദ്ദേഹമിത് വിശദമാക്കും. കാത്തിരിക്കാം.

Tidak ada komentar:

Posting Komentar