MATHEMATICS

Jumat, 03 September 2010

റൂട്ട് നാല് അഭിന്നകമാണോ?


നമ്മുടെ ടീം മെമ്പറായ മുരളീധരന്‍ സാറിനെക്കുറിച്ച് ഒരാമുഖത്തിന്‍റെ ആവശ്യമില്ല. അദ്ദേഹം ആദ്യമായെഴുതുമ്പോള്‍ രണ്ട് വാക്ക് പറയാതെ ശരിയാകുമോ? മുമ്പൊരിക്കല്‍ ബ്ലോഗിലൂടെ അദ്ദേഹത്തിന്റെ ചോദ്യപേപ്പര്‍ പ്രസിദ്ധീകരിച്ചിരുന്നു, കേട്ടോ. പാലക്കാട് ജില്ലയില്‍ നിന്നുള്ള ഗണിതശാസ്ത്ര റിസോഴ്സ് പേഴ്സണ്‍ ആണ് മുരളിസാര്‍. DRG പരിശീലനക്യാമ്പുകളിലെ നിറസാന്നിധ്യമാണ് അദ്ദേഹം. വളരെക്കുറച്ച് സംസാരിക്കുന്ന വ്യക്തി. പറയുന്നത് ഗണിതമായിരിക്കും. അതിന് കനമുണ്ടായിരിക്കും. പണ്ട്, ഗണിതബ്ലോഗിന്റെ ആദ്യകാലങ്ങളില്‍ കമന്റുചെയ്യുന്നതില്‍ നിന്നും മുരളിസാറിനെ വിലക്കിയതോര്‍ക്കുന്നു. എന്തിനായിരുന്നു അത്? പസിലുകള്‍ നിറഞ്ഞൊഴുകുന്ന കാലം. അഞ്ചുമണിവെളുപ്പിന് പോസ്റ്റുവന്നാല്‍ അഞ്ചുമിനിറ്റിനുള്ളില്‍ ഉത്തരമിട്ട് മുരളിസാര്‍ നാടുവിട്ടിരിക്കും. മറ്റുള്ളവര്‍ക്ക് ഒന്നു ചിന്തിക്കാന്‍ പോലും ഇടനല്‍കാതെ.... അഭിന്നകസംഖ്യകളെക്കുറിച്ച് മുരളിസാര്‍ എഴുതുന്നു. നമ്മള്‍, ഗണിതാദ്ധ്യാപകര്‍ക്ക് ചിന്തിക്കാനുള്ള ഒരു വഴിതുറക്കുകയാണ് അദ്ദേഹം. എവിടെയോ ഒളിഞ്ഞിരിക്കുന്ന യുക്തിഭംഗത്തെ തിരിച്ചറിഞ്ഞുതന്നെയാണ് ഇതെഴുതിയത്. വിരോധാഭാസവഴിയിലൂടെ നടന്നുനീങ്ങുന്ന ഒരാള്‍ക്ക് പറ്റിയേക്കാവുന്ന അബദ്ധമായിരിക്കാം അദ്ദേഹം മറനീക്കുന്നത്. എന്തായാലും മുരളി സാര്‍ ഒരു അധ്യാപികയുടെ ക്ലാസിലേക്ക് നമ്മുടെ ശ്രദ്ധ ക്ഷണിക്കുകയാണ്. നമുക്കൊന്നു ശ്രദ്ധിക്കാം.

√2 അഭിന്നകമാണെന്ന് സ്ഥാപിക്കാന്‍ ടീച്ചറുടെ ശ്രമം. √2 ഒരു ഭിന്നകമാണെങ്കില്‍ ആ ഭിന്നകത്തിന്റെ വര്‍ഗ്ഗം 2 ആകണമല്ലോ. ഇതിനു വേണ്ടി ഇരട്ടസംഖ്യകളുടെ വര്‍ഗ്ഗം ഇരട്ടസംഖ്യകളാണെന്നും ഒറ്റസംഖ്യകളുടെ വര്‍ഗ്ഗം ഒറ്റസംഖ്യകളാണെന്നും അനേകം ഉദാഹരണങ്ങള്‍ സഹിതം കുട്ടികളെ ബോധ്യപ്പെടുത്തുന്നു . ഇരട്ടസംഖ്യകള്‍ 2 ന്റെ ഗുണിതങ്ങളാകയാല്‍ 2 ന്റെ ഗുണിതങ്ങളുടെ വര്‍ഗ്ഗം 2ന്റെ ഗുണിതങ്ങളായിരിക്കും എന്ന നിഗമനത്തിലെത്തിച്ചേരുന്നു.

അതുപോലെ 3 ന്റെ ഗുണിതങ്ങളുടെ വര്‍ഗ്ഗം 3ന്റെ ഗുണിതങ്ങളായിരിക്കും എന്നും കണ്ടെത്തുന്നു. അതിനാല്‍ 2 ന്റെ ഗുണിതങ്ങളുടെ വര്‍ഗ്ഗമൂലങ്ങളും 2ന്റെ ഗുണിതമായിരിക്കും എന്നും 3 ന്റെ ഗുണിതങ്ങളുടെ വര്‍ഗ്ഗമൂലങ്ങളും 3ന്റെ ഗുണിതമായിരിക്കും എന്നും കണ്ടെത്തുന്നു.
ഇനി √2 ഭിന്നകമാണെന്ന് സങ്കല്‍പ്പിക്കുന്നു. ഈ ഭിന്നകത്തിന്റെ ലഘുരൂപം p/q ആണെന്നു സങ്കല്‍പ്പിക്കുന്നു.

ie √2 = p/q (p,q ഇവയ്ക്ക് പൊതു ഗുണിതങ്ങളില്ല.)
=> 2 = p2/q2
=> p2 = 2q2
=> p2 രണ്ടിന്റെ ഗുണിതം
=> p രണ്ടിന്റെ ഗുണിതം say 2k
=> (2k)2 = 2q2
=> q2 രണ്ടിന്റെ ഗുണിതം
=>q രണ്ടിന്റെ ഗുണിതം
=> p , q ഇവ രണ്ടിന്റെ ഗുണിതങ്ങള്‍
=> ഇത് സങ്കല്പത്തിനെതിര്
=> അതിനാല്‍ √2 ഭിന്നകമല്ല. (ഒരു ഭിന്നകത്തിന്റെയും വര്‍ഗ്ഗം 2 അല്ല.)

ഇതുപോലെ 2 ന്റെ ഗുണിതം എന്നതിനു പകരം 3 ന്റെ ഗുണിതം എന്നെടുത്താല്‍ √3 ഉം ഭിന്നകമല്ല എന്നു തെളിയിക്കാം എന്നു ടീച്ചര്‍ പറയുന്നു.
അപ്പോള്‍ ഒരു കുട്ടി √6 ഭിന്നകമല്ല എന്നു തെളിയിക്കാമോ എന്നു ചോദിക്കുന്നു.
ഇതിന് 6 ന്റെ ഗുണിതം എന്ന ആശയം എടുത്താല്‍ മതി എന്ന് ടീച്ചര്‍ പറയുന്നു.
√6 = p/q (p,q ഇവയ്ക്ക് പൊതു ഗുണിതങ്ങളില്ല.)
=> 6 = p2/q2
=> p2 = 6q2
=> p2 ആറിന്റെ ഗുണിതം
=> p ആറിന്റെ ഗുണിതം say 6t
=> (6t)2 = 6q2
=> q2 = 6t2
=> q2 ആറിന്റെ ഗുണിതം
=>q ആറിന്റെ ഗുണിതം
=> p , q ഇവ ആറിന്റെ ഗുണിതങ്ങള്‍
=> ഇത് സങ്കല്പത്തിനെതിര്
=> അതിനാല്‍ √6 ഭിന്നകമല്ല. (ഒരു ഭിന്നകത്തിന്റെയും വര്‍ഗ്ഗം 6 അല്ല.)

ഇനി നിങ്ങള്‍ക്കിഷ്ടമുള്ള ഒരു സംഖ്യ ഭിന്നകമല്ലെന്നു തെളിയിക്കൂ എന്നു ടീച്ചര്‍ കുട്ടികളോടാവശ്യപ്പെടുന്നു. ഒരു കുട്ടി ചെയ്തതിങ്ങനെ.
√4 = p/q (p,q ഇവയ്ക്ക് പൊതു ഗുണിതങ്ങളില്ല.)
=> 4 = p2/q2
=> p2 = 4q2
=> p2 നാലിന്റെ ഗുണിതം
=> p നാലിന്റെ ഗുണിതം say 4a
=> (4a)2 = 4q2
=> q2 = 4a2
=> q2 നാലിന്റെ ഗുണിതം
=>q നാലിന്റെ ഗുണിതം
=> p , q ഇവ നാലിന്റെ ഗുണിതങ്ങള്‍
=> ഇത് സങ്കല്പത്തിനെതിര്
=> അതിനാല്‍ √4 ഭിന്നകമല്ല.

ഇതു കണ്ട ടീച്ചര്‍ അന്തം വിട്ടു നില്ക്കുന്നു. (കുറച്ചു നേരത്തേക്കെങ്കിലും). ഇവിടെ പിശകിയത് എവിടെയാണ്? ഒമ്പതാം ക്ലാസിലെ അഭിന്നകങ്ങളുമായി ബന്ധപ്പെട്ട ഒരു ചര്‍ച്ച പ്രതീക്ഷിക്കുന്നു. ചോദ്യങ്ങളും സംശയങ്ങളുമൊക്കെയാകാം.


സമാന വിഷയവുമായി ബന്ധപ്പെട്ട് കണ്ണൂര്‍ ജില്ലയിലെ കുഞ്ഞിമംഗലത്തു നിന്നും സി. മോഹനന്‍ സാര്‍ അയച്ചു തന്ന ഒരു ഡോക്യുമെന്റ് ഇതോടൊപ്പമുണ്ട്. ഇതു കൂടി ചര്‍ച്ചയ്ക്ക് വിധേയമാക്കുമല്ലോ.

Tidak ada komentar:

Posting Komentar