MATHEMATICS

Rabu, 22 Juni 2011

Formal mathematics

Reading formal mathematics is even harder than standard theorem / proof mathematics. For example:

$$ \forall{x} \exists{y} (( y \neq 1 \& \forall{z} ( \exists{t} ( z \cdot t = y) \rightarrow ( z=1 \wedge z=y ))) \& \exists{s} (x+s=y)) $$

for all x a y exists such that
    y not equal to 1 and for all  z a t exists such that
       z times t = y implies z =1 or z = y
   and a s exists such that x plus s = y.

Do you get it? There are infinitely many primes.

Tidak ada komentar:

Posting Komentar