സമാന്തരശ്രേണിയില് നിന്നും രൂപപ്പെടുത്താവുന്ന ചില തുടര്മൂല്യനിര്ണ്ണയ ഉപാധികളെക്കുറിച്ചാണ് ഇന്നത്തെ പോസ്റ്റ്.സമാന്തരശ്രേണിയുടെ ഒരു നിശ്ചിത പദം കാണുന്നതിനുള്ള പൊതുരീതി പരിശീലിച്ചശേഷം ഇതൊന്നു പരിശോധിച്ചുനോക്കൂ.
ഒരു സംഖ്യയുടെ ഘനം(Cube)കണക്കാക്കുന്നതിന് സമാന്തരശ്രേണി ഉപയോഗിക്കുന്ന ഒരു രീതിയുണ്ട് . n പദങ്ങളുള്ള ഒരു സമാന്തരശ്രേണി പരിഗണിക്കുക. അതിന്റെ ആദ്യത്തെ പദം n ആയും പൊതുവ്യത്യാസം 2n ആയും വരത്തക്കവിധമാണ് ശ്രേണി എഴുതേണ്ടത്.
\begin{align}
\begin{equation}
n,3n,5n,7n ,9n , 11n,13n...
\end{equation}
\end{align}
എന്നിങ്ങനെ ശ്രേണി എഴുതിയാല് അവസാനത്തെ പദം ഈ ശ്രേണിയുടെ അവസാനപദം $2 n^2 - n $ ആണല്ലോ .ഈ ശ്രേണിയുടെ പദങ്ങളുടെ തുക $n^3$ ആയിരിക്കും.
ഈ രീതിയ്ക്ക് ചരിത്രപരമായ ഒരു പ്രാധാന്യമുണ്ട്.ഇന്ഡ്യന് ഗണിതഞ്ജനായ മഹാവീരനാണത്രേ ഈ രീതി ആവിഷ്ക്കരിച്ചത്.കളക്ഷന് ബുക്കിലേയ്ക്ക് നിര്ദ്ദേശിക്കാവുന്ന ഒരു വിവരമായി ഇതുകാണാവുന്നതാണ്.സമാന്തരശ്രേണി എന്ന ആശയം വിജയകരമായി ഉപയോഗിക്കാവുന്ന ഒരു സാഹചര്യം കൂടിയാണിത്.
ഇനി ഒരു പ്രോജക്ട് വിഷയമാകാം. വിവിധ സാഹചര്യങ്ങളില് നിന്നും രൂപം കൊള്ളുന്ന ശ്രേണികള് , അവയില് നിന്നും രൂപപ്പെടാവുന്ന സംഖ്യാശ്രേണികള്,വിവിധങ്ങളായ സംഖ്യാശ്രേണികളില് നിന്നും തിരിച്ചറിയപ്പെടുന്ന സമാന്തരശ്രേണികള്, സമാന്തരശ്രേണികളുടെ തനതായ പ്രത്യേകതകള്, അവയുടെ ബീജഗണിതഭാഷ്യം എന്നിവയാണല്ലോ പഠനവസ്തുതകള്.
\begin{align}
\begin{equation}
1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,....
\end{equation}
\end{align}
എണ്ണല്സംഖ്യാശ്രേണിയുടെ ഇടത്തെ അറ്റംമുതല് രണ്ടുവീതം കൂട്ടി ഒരു പുതിയ ശ്രേണി എഴുതാം.
\begin{align}
\begin{equation}
3 ,7 ,11 ,15 ,19, 23 ,27 ,31 ,35 ......
\end{equation}
\end{align}
ഇനി ഇതുപോലെ മൂന്നു എണ്ണല്സംഖ്യകള് വീതം കൂട്ടി ശ്രേണി എഴുതുക.ഇങ്ങനെ നാലെണ്ണം , അഞ്ചെണ്ണം , ആറെണ്ണം എന്ന ക്രമത്തില് കൂട്ടി ശ്രേണികള് എഴുതാം. ഇവയെല്ലാം സമാന്തരശ്രേണികളായിരിക്കുമല്ലോ.
- ഇങ്ങനെ എഴുതുന്ന സമാന്തരശ്രേണികളുടെ പൊതുവ്യത്യാസത്തിന് എന്തുപ്രത്യേകതയാണുള്ളത്?
- n എണ്ണല് സംഖ്യകള് വീതം കൂട്ടി ശ്രേണിയുമ്ടാക്കിയാല് അതിന്റെ പൊതുവ്യത്യാസം എത്രയായിരിക്കും?
- എണ്ണല് സംഖ്യകളുടെ സ്ഥാനത്ത് ഒരു സമാന്തരശ്രേണി ഉപയോഗിച്ച് ഈ പ്രവര്ത്തനം തുടര്ന്നാല് എന്താണ് നിരീക്ഷിക്കാന് കഴിയുന്നത്?
- ഒരു സമാന്തരശ്രേണിയുടെ ആദ്യത്തെ n പദങ്ങളുടെ തുകയും പീന്നീടുള്ള n പദങ്ങഴുടെ തുകയും തമ്മിലുള്ള വ്യത്യാസം എത്രയാണ്?(ഒരുക്കം 2007)
1 മുതല് $n$ വരെയുള്ള എണ്ണല് സംഖ്യകളുടെ തുക$ \frac{n(n+1)}{2}$ ആയിരിക്കും.ഈ ആശയം ഉചിതമായി ഉപയോഗിക്കാവുന്നതാണ്.ഗ്രൂപ്പുതുക $x$ ല് നിന്നും തുടങ്ങുന്നു എന്നു കരുതുക. ഇനിയുള്ള ആറ് തുകകള് ഏതൊക്കെയെന്ന് എഴുതാമല്ലോ. ഗ്രൂപ്പുതുകകളുടെ തുകയാണല്ലോ 210..........
Tidak ada komentar:
Posting Komentar