MATHEMATICS

Minggu, 12 Juni 2011

തുടര്‍മുല്യനിര്‍ണ്ണയ പ്രവര്‍ത്തനങ്ങള്‍


ഗണിതബ്ലോഗില്‍ 'ഗണിത പോസ്റ്റുകളുടെ കുറവില്‍ 'ആശങ്കപ്പെട്ട് വിളിക്കുന്നവരുടെ എണ്ണം ഈയിടെയായി വര്‍ദ്ധിച്ചുവരുന്നുണ്ട്. ജോണ്‍സാറിനും കൃഷ്ണന്‍ സാറിനുമൊക്കെ വലിയ തെരക്കുകള്‍ക്കിടയിലും ചെയ്യാവുന്ന കാര്യങ്ങള്‍ക്ക് പരിമിതി കാണുമല്ലോ..! അത് പരിഹരിക്കാന്‍ മറ്റുള്ളവരും മുന്നോട്ടുവരേണ്ടതുണ്ട്.
സമാന്തരശ്രേണിയില്‍ നിന്നും രൂപപ്പെടുത്താവുന്ന ചില തുടര്‍മൂല്യനിര്‍ണ്ണയ ഉപാധികളെക്കുറിച്ചാണ് ഇന്നത്തെ പോസ്റ്റ്.സമാന്തരശ്രേണിയുടെ ഒരു നിശ്ചിത പദം കാണുന്നതിനുള്ള പൊതുരീതി പരിശീലിച്ചശേഷം ഇതൊന്നു പരിശോധിച്ചുനോക്കൂ.

ഒരു സംഖ്യയുടെ ഘനം(Cube)കണക്കാക്കുന്നതിന് സമാന്തരശ്രേണി ഉപയോഗിക്കുന്ന ഒരു രീതിയുണ്ട് . n പദങ്ങളുള്ള ഒരു സമാന്തരശ്രേണി പരിഗണിക്കുക. അതിന്റെ ആദ്യത്തെ പദം n ആയും പൊതുവ്യത്യാസം 2n ആയും വരത്തക്കവിധമാണ് ശ്രേണി എഴുതേണ്ടത്.

\begin{align}
\begin{equation}
n,3n,5n,7n ,9n , 11n,13n...
\end{equation}
\end{align}
എന്നിങ്ങനെ ശ്രേണി എഴുതിയാല്‍ അവസാനത്തെ പദം ഈ ശ്രേണിയുടെ അവസാനപദം $2 n^2 - n $ ആണല്ലോ .ഈ ശ്രേണിയുടെ പദങ്ങളുടെ തുക $n^3$ ആയിരിക്കും.
ഈ രീതിയ്ക്ക് ചരിത്രപരമായ ഒരു പ്രാധാന്യമുണ്ട്.ഇന്‍ഡ്യന്‍ ഗണിതഞ്ജനായ മഹാവീരനാണത്രേ ഈ രീതി ആവിഷ്ക്കരിച്ചത്.കളക്ഷന്‍ ബുക്കിലേയ്ക്ക് നിര്‍ദ്ദേശിക്കാവുന്ന ഒരു വിവരമായി ഇതുകാണാവുന്നതാണ്.സമാന്തരശ്രേണി എന്ന ആശയം വിജയകരമായി ഉപയോഗിക്കാവുന്ന ഒരു സാഹചര്യം കൂടിയാണിത്.

ഒരു പ്രോജക്ട് രൂപം കൊള്ളുന്നു

ഇനി ഒരു പ്രോജക്ട് വിഷയമാകാം. വിവിധ സാഹചര്യങ്ങളില്‍ നിന്നും രൂപം കൊള്ളുന്ന ശ്രേണികള്‍ , അവയില്‍ നിന്നും രൂപപ്പെടാവുന്ന സംഖ്യാശ്രേണികള്‍,വിവിധങ്ങളായ സംഖ്യാശ്രേണികളില്‍ നിന്നും തിരിച്ചറിയപ്പെടുന്ന സമാന്തരശ്രേണികള്‍, സമാന്തരശ്രേണികളുടെ തനതായ പ്രത്യേകതകള്‍, അവയുടെ ബീജഗണിതഭാഷ്യം എന്നിവയാണല്ലോ പഠനവസ്തുതകള്‍.
‌\begin{align}
\begin{equation}
1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,....
\end{equation}
\end{align}
എണ്ണല്‍സംഖ്യാശ്രേണിയുടെ ഇടത്തെ അറ്റംമുതല്‍ രണ്ടുവീതം കൂട്ടി ഒരു പുതിയ ശ്രേണി എഴുതാം.
‌\begin{align}
\begin{equation}
3 ,7 ,11 ,15 ,19, 23 ,27 ,31 ,35 ......
\end{equation}
\end{align}
ഇനി ഇതുപോലെ മൂന്നു എണ്ണല്‍സംഖ്യകള്‍ വീതം കൂട്ടി ശ്രേണി എഴുതുക.ഇങ്ങനെ നാലെണ്ണം , അഞ്ചെണ്ണം , ആറെണ്ണം എന്ന ക്രമത്തില്‍ കൂട്ടി ശ്രേണികള്‍ എഴുതാം. ഇവയെല്ലാം സമാന്തരശ്രേണികളായിരിക്കുമല്ലോ.
  1. ഇങ്ങനെ എഴുതുന്ന സമാന്തരശ്രേണികളുടെ പൊതുവ്യത്യാസത്തിന് എന്തുപ്രത്യേകതയാണുള്ളത്?
  2. n ​എണ്ണല്‍ സംഖ്യകള്‍ വീതം കൂട്ടി ശ്രേണിയുമ്ടാക്കിയാല്‍ അതിന്റെ പൊതുവ്യത്യാസം എത്രയായിരിക്കും?
  3. എണ്ണല്‍ സംഖ്യകളുടെ സ്ഥാനത്ത് ഒരു സമാന്തരശ്രേണി ഉപയോഗിച്ച് ഈ പ്രവര്‍ത്തനം തുടര്‍ന്നാല്‍ എന്താണ് നിരീക്ഷിക്കാന്‍ കഴിയുന്നത്?
  4. ഒരു സമാന്തരശ്രേണിയുടെ ആദ്യത്തെ n പദങ്ങളുടെ തുകയും പീന്നീടുള്ള n പദങ്ങഴുടെ തുകയും തമ്മിലുള്ള വ്യത്യാസം എത്രയാണ്?(ഒരുക്കം 2007)

കളക്ഷന്‍ ബുക്കിലേയ്ക്ക്
പൂജ്യം മുതല്‍ 20 വരെയുള്ള അഖണ്ഡസംഖ്യകള്‍ 3 എണ്ണം വീതമുള്ള 7 ഗ്രൂപ്പുകളാക്കുക.ഒരു ഗ്രൂപ്പിലുള്ള മൂന്നു സംഖ്യകളുടെ തുകയാണ് ഗ്രൂപ്പുതുക.ഗ്രൂപ്പുതുകകള്‍ തുടര്‍ച്ചയായ ഏഴ് എണ്ണല്‍സംഖ്യകളായിരിക്കണം. എപ്രകാരം ഗ്രൂപ്പുകളാക്കാം.‌‌
1 മുതല്‍ $n$ വരെയുള്ള എണ്ണല്‍ സംഖ്യകളുടെ തുക$ ‌\frac{n(n+1)}{2}$ ആയിരിക്കും.ഈ ആശയം ഉചിതമായി ഉപയോഗിക്കാവുന്നതാണ്.ഗ്രൂപ്പുതുക $x$ ല്‍ നിന്നും തുടങ്ങുന്നു എന്നു കരുതുക. ഇനിയുള്ള ആറ് തുകകള്‍ ഏതൊക്കെയെന്ന് എഴുതാമല്ലോ. ഗ്രൂപ്പുതുകകളുടെ തുകയാണല്ലോ 210..........

Tidak ada komentar:

Posting Komentar