MATHEMATICS

Rabu, 08 Desember 2010

[Exercise] - 1a : Hint

Let $n \in \mathbb{N}$, show that $$f(n) = \frac{(2+\sqrt{3})^{1+2n}+(2-\sqrt{3})^{1+2n}+2}{6}$$ is a square.

Hint: MST121 / MS221 math suffices to solve this one, we need to find a function $A(n)$ such that $${A(n)}^2 = \frac{(2+\sqrt{3})^{1+2n}+(2-\sqrt{3})^{1+2n}+2}{6}$$
and
$$f(n) = A(n) \in \mathbb{N}$$
( To be continued. )

Tidak ada komentar:

Posting Komentar