| k | P[k] | Mod[P[k],k] | PrimeQ |
| 2 | 2 | 0 | True |
| 3 | 3 | 0 | True |
| 4 | 2 | 2 | False |
| 5 | 5 | 0 | True |
| 6 | 5 | 5 | False |
| 7 | 7 | 0 | True |
| 8 | 10 | 2 | False |
| 9 | 12 | 3 | False |
| 10 | 17 | 7 | False |
| 11 | 22 | 0 | True |
| 12 | 29 | 5 | False |
| 13 | 39 | 0 | True |
| 14 | 51 | 9 | False |
| 15 | 68 | 8 | False |
| 16 | 90 | 10 | False |
| 17 | 119 | 0 | True |
| 18 | 158 | 14 | False |
| 19 | 209 | 0 | True |
| 20 | 277 | 17 | False |
| 21 | 367 | 10 | False |
| 22 | 486 | 2 | False |
| 23 | 644 | 0 | True |
| 24 | 853 | 13 | False |
| 25 | 1130 | 5 | False |
| 26 | 1497 | 15 | False |
| 27 | 1983 | 12 | False |
| 28 | 2627 | 23 | False |
| 29 | 3480 | 0 | True |
| 30 | 4610 | 20 | False |
| 31 | 6107 | 0 | True |
| 32 | 8090 | 26 | False |
| 33 | 10717 | 25 | False |
| 34 | 14197 | 19 | False |
| 35 | 18807 | 12 | False |
| 36 | 24914 | 2 | False |
| 37 | 33004 | 0 | True |
| 38 | 43721 | 21 | False |
| 39 | 57918 | 3 | False |
| 40 | 76725 | 5 | False |
Blog Ini Bertujuan Membantu mendidik masyarakat di bidang matematik (Helping community in studying mathematic)
Selasa, 06 September 2011
Perrin numbers
Let $P(0)=3, P(1)=0, P(2)=2$ and $$P(k) = P(k-2) + P(k-3.)$$ These numbers are called the Perrin numbers. They have the interesting property that $\mod{[P(k), k]} = 0$ in almost all cases when k is prime. ( Otherwise we would have found a true prime generator! ). In any case the property holds until $k=271441.$ Interesting, isn't it? See the table below for the first 40 Perrin numbers.
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar