MATHEMATICS

Jumat, 06 Juli 2012

വേറിട്ടചിന്തകള്‍ :1 സമാന്തരശ്രേണി

ഇത്തവണ പത്താം ക്ലാസിലെ ഐടി ടെസ്റ്റിനൊഴികെ മറ്റ് പുസ്തകങ്ങള്‍ക്കൊന്നും മാറ്റമില്ല. അധ്യാപകര്‍ക്ക് പിന്തുണ നല്‍കുകയെന്ന ഉദ്ദേശ്യത്തോടെ ഐടിയുമായി ബന്ധപ്പെട്ട പോസ്റ്റുകള്‍ മാത്​സ് ബ്ലോഗ് പ്രസിദ്ധീകരിച്ചുവെന്നതു വാസ്തവം. ഇതില്‍ ഒട്ടേറെ പേര്‍ പരിഭവം പറയുകയുണ്ടായി. ഗൗരവമായ ഗണിതചര്‍ച്ച പ്രതീക്ഷിക്കുന്നിടത്ത് മറ്റു വിഷയങ്ങളിലുള്ള ചര്‍ച്ചകള്‍ വന്നാലോ? ഗണിതസ്നേഹികള്‍ക്ക് അത് സഹിക്കാവുന്നതിനപ്പുറമാണ്. അതുകൊണ്ടു തന്നെ ജൂണ്‍ മാസം വിടപറയും മുമ്പേ ഒരു ഗണിതപോസ്റ്റ് പ്രസിദ്ധീകരിക്കട്ടെ. ചില വേറിട്ട കാഴ്ചകളിലേയ്ക്ക് ശ്രദ്ധക്ഷണിക്കുകയാണ്. ഗണിതപാഠപുസ്തകത്തിന്റെ വരികള്‍ക്കിടയില്‍ ഒളിഞ്ഞിരിക്കുന്ന ചിന്തകളെ തൊട്ടുണര്‍ത്തുന്നത് നമുക്കൊക്കെ സുപരിചിതനായ കണ്ണന്‍സാര്‍ തന്നെയാണ്. അദ്ദേഹം തയ്യാറാക്കിയ സമാന്തരശ്രേണിയെക്കുറിച്ചുള്ള ഈ കാഴ്ചകള്‍ അയച്ചുതന്നത് ഹിതയാണ്. രണ്ടുപേര്‍ക്കും പ്രത്യേകം നന്ദിപറഞ്ഞുകൊണ്ട് നമുക്ക് Beyond The Text എന്ന പുതിയ പരമ്പരയ്ക്ക് തുടക്കമിടാം. ഒരു കോടിയോടടുക്കുന്ന ബ്ലോഗ് ഹിറ്റുകള്‍ പുതിയ ഉത്തരവാദിത്വങ്ങളും പുതിയ ആവേശവും പകര്‍ന്നുതരുന്നു. ഗണിതപാഠങ്ങളെ മുന്‍നിറുത്തിയുള്ള നൂതനചിന്തകളില്‍ മാത്‌സ്ബ്ലോഗിന്റെ മാന്യസന്ദര്‍ശകരും ഗണിതസ്നേഹികളും വിലയേറിയ അഭിപ്രായങ്ങള്‍ എഴുതി പോസ്റ്റ് സമ്പന്നമാക്കുമെന്ന് പ്രതീക്ഷിക്കുന്നു. 3 ന്റെ ആദ്യത്തെ ഒന്‍പത് ഗുണിതങ്ങള്‍ മൂന്നു വരികളിലും മൂന്നു നിരകളിലുമായെഴുതുക. ചുവടെ അത് ചിത്രീകരിച്ചിരിക്കുന്നത് നോക്കൂ.

ഇവ സമാന്തരശ്രേണിയിലാണല്ലോ..? .പട്ടികയിലെ സംഖ്യകളുടെ തുക $=\frac{9}{2} \times 30 = 135$ആണ്. ഇനി 4 ന്റെ ആദ്യത്തെ 9 ഗുണിതങ്ങള്‍ മൂന്നു വരികളിലും മൂന്നു നിരകളിലുമായെഴുതുക. .

ഇതും സമാന്തരശ്രേണിയില്‍ തന്നെയാണല്ലോ. ഇവയുടെ തുക $= \frac{9}{2} \times 40 =180$ എന്നാണല്ലോ..? 5 ന്റെ ആദ്യത്തെ 9 ഗുണിതങ്ങള്‍ മൂന്നുവരികളിലും മൂന്നു നിരകളിലുമായെഴുതുക.

6 ന്റെ ആദ്യത്തെ 9 ഗുണിതങ്ങള്‍ മൂന്നുവരികളിലും മൂന്നു നിരകളിലുമായെഴുതുക. ഇവയുടെ തുക $= \frac{9}{2} \times 60 =270$

നിരീക്ഷണവിധേയമാക്കിയാല്‍ ചില ക്രമങ്ങള്‍ കണ്ടെത്താന്‍ കഴിയും

1) തുകകള്‍ സമാന്തരശ്രേണിയിലാണ് .
2) 135 , 180, 225 , 270 2)$135^3 +180^3+225^3=270^3$
3)$135^2+180^2 = 225^2$

ഈ സംഖ്യാചതുരങ്ങളെ ഒരു പ്രത്യേകതരത്തില്‍ ക്രമീകരിക്കുന്നു.

വലതുഭാഗത്തും താഴെയും ഇടതുഭാഗത്തും വരുന്ന സമചതുരങ്ങളിലെ സമാനസ്ഥാനത്തുള്ള സംഖ്യകള്‍ കണ്ടല്ലോ. അവ താഴെ കൊടുക്കുന്നപ്രകാരം കൂട്ടിയെടുക്കാം



അത്തരം നിരവധി സമവാക്യങ്ങള്‍ കൂടി ഉണ്ടാക്കിയെടുക്കാം. പൈത്തഗോറിയന്‍ ത്രയങ്ങള്‍കൂടി ലഭിക്കുന്നൂവെന്ന് പറയേണ്ടതില്ലല്ലോ..?
വലതുഭാഗത്തും ഇടതുഭാഗത്തും താഴെയും വരുന്ന പട്ടികയിലെ സമാനവരികളിലെയും നിരകളിലെയും തുക നോക്കുക

$3+6+9 = 18$
, $ 4+8+12 = 24$
; , $5+10+15 = 30$
;$18^2+24^2=30^2$
ഇവിടെ 18, 24 , 30 എന്നിവ പൈതഗോറിയന്‍ സംഖ്യാത്രയങ്ങള്‍ രൂപീകരിക്കുന്നു
18,24,30 ഇവ പൈത്തഗോറിയന്‍ ത്രയങ്ങള്‍ തന്നെയാണല്ലോ..?
ഇനി മറ്റൊരു പ്രത്യേകത നോക്കാം .
സമചതുരത്തിന്റെ വലതുഭാഗത്തും താഴെയും ഇടതുഭാഗത്തും മുകളിലും ഉള്ള പട്ടികയിലെ സമാനസ്ഥാനങ്ങളിലെ പദങ്ങള്‍ നോക്കുക
$3^3+4^3+5^3=6^3$
$6^3+8^3+10^3=12^3$
$9^3+12^3+15^3=18^3$
$21^3+28^3+35^3=42^3$
ഇത്തരം നിരവധി സമവാക്യങ്ങളുണ്ടാക്കിയെടുക്കാം.


ഇനിയുമുണ്ട് ഒത്തിരി പ്രത്യേകതകള്‍. അവ കണ്ടെത്തി കമന്റ് ചെയ്യുമല്ലോ?

കണ്ണന്‍ സാര്‍ തയ്യാറാക്കിയ പാറ്റേണ്‍വിശകലനത്തിന്റെ പി.ഡി എഫ് രൂപം

Tidak ada komentar:

Posting Komentar