k | P[k] | Mod[P[k],k] | PrimeQ |
2 | 2 | 0 | True |
3 | 3 | 0 | True |
4 | 2 | 2 | False |
5 | 5 | 0 | True |
6 | 5 | 5 | False |
7 | 7 | 0 | True |
8 | 10 | 2 | False |
9 | 12 | 3 | False |
10 | 17 | 7 | False |
11 | 22 | 0 | True |
12 | 29 | 5 | False |
13 | 39 | 0 | True |
14 | 51 | 9 | False |
15 | 68 | 8 | False |
16 | 90 | 10 | False |
17 | 119 | 0 | True |
18 | 158 | 14 | False |
19 | 209 | 0 | True |
20 | 277 | 17 | False |
21 | 367 | 10 | False |
22 | 486 | 2 | False |
23 | 644 | 0 | True |
24 | 853 | 13 | False |
25 | 1130 | 5 | False |
26 | 1497 | 15 | False |
27 | 1983 | 12 | False |
28 | 2627 | 23 | False |
29 | 3480 | 0 | True |
30 | 4610 | 20 | False |
31 | 6107 | 0 | True |
32 | 8090 | 26 | False |
33 | 10717 | 25 | False |
34 | 14197 | 19 | False |
35 | 18807 | 12 | False |
36 | 24914 | 2 | False |
37 | 33004 | 0 | True |
38 | 43721 | 21 | False |
39 | 57918 | 3 | False |
40 | 76725 | 5 | False |
Blog Ini Bertujuan Membantu mendidik masyarakat di bidang matematik (Helping community in studying mathematic)
Selasa, 06 September 2011
Perrin numbers
Let $P(0)=3, P(1)=0, P(2)=2$ and $$P(k) = P(k-2) + P(k-3.)$$ These numbers are called the Perrin numbers. They have the interesting property that $\mod{[P(k), k]} = 0$ in almost all cases when k is prime. ( Otherwise we would have found a true prime generator! ). In any case the property holds until $k=271441.$ Interesting, isn't it? See the table below for the first 40 Perrin numbers.
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar